

Analytical Method Development and Validation of Dapagliflozin and Vildagliptin using High Performance Liquid ChromatographyPatel Sanjeetha Reddy,¹ Dr. S.N.V.L Sirisha,² L. Saraswathi³

1, M. Pharmacy, Department of Pharmaceutical Analysis, Malla Reddy College of Pharmacy, Maisammaguda, Secunderabad, Hyderabad, 500100, Medchal District

2, M. Pharmacy, PhD, Associate Professor, Department of Pharmacognosy, Malla Reddy College of Pharmacy, Maisammaguda, Secunderabad, Hyderabad, 500100, Medchal District

3, M. Pharmacy, Assistant Professor, Department of Pharmaceutical Analysis, Malla Reddy College of Pharmacy, Maisammaguda, Secunderabad, Hyderabad, 500100, Medchal District

Received: 15-01-2026 / Revised Accepted: 18-01-2026 / Published: 21-01-2026**ABSTRACT:**

A simple, Accurate, precise method was developed for the simultaneous estimation of the Dapagliflozin and Vildagliptin in Tablet dosage form. Chromatogram was run through Agilent 250 x 4.6 mm, 5 μ . Mobile phase containing Buffer 0.1% OPA: Acetonitrile taken in the ratio 45:55 was pumped through column at a flow rate of 1 ml/min. Buffer used in this method was Potassium dihydrogen orthophosphate buffer. Temperature was maintained at 30°C. Optimized wavelength selected was 260.0 nm. Retention time of Vildagliptin and Dapagliflozin were found to be 2.290 min and 2.896 min. %RSD of the Dapagliflozin and Vildagliptin were and found to be 0.5 and 0.4 respectively. %Recovery was obtained as 99.05% and 99.28% for Dapagliflozin and Vildagliptin respectively. LOD, LOQ values obtained from regression equations of Dapagliflozin and Vildagliptin were 0.01, 0.03 and 0.33, 1.0 respectively. Regression equation of Dapagliflozin is $y = 32384x + 806.79$, and $y = 28076x + 6435.3$ of Vildagliptin.

Key Words: Vildagliptin, Dapagliflozin, Rp Hplc, Validation.**INTRODUCTION**

Dapagliflozin and Vildagliptin represent two important classes of oral medications used to manage type 2 diabetes mellitus (T2DM). Both drugs are essential components of modern pharmacotherapy for diabetes due to their efficacy in controlling hyperglycemia and their additional benefits in reducing diabetes-related complications. Dapagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, works by inhibiting the SGLT2 protein in the proximal renal tubules. This leads to increased urinary glucose excretion, thereby lowering blood glucose levels. In addition to glycemic control, Dapagliflozin has demonstrated significant benefits in reducing cardiovascular risk, as well as slowing the progression of chronic kidney disease (CKD), making it an ideal choice for patients with coexisting heart failure or CKD [1-4]. Dapagliflozin weight-reducing effects further enhance its appeal in patients with T2DM who are often overweight or obese [5]. On the other hand, Vildagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor that works by preventing the breakdown of incretin hormones such as glucagon-like peptide-1 (GLP-1). These hormones stimulate insulin release from the pancreas in response to meals, while also suppressing glucagon secretion. By prolonging the action of incretins, Vildagliptin helps to regulate blood glucose levels in a glucose-dependent manner, which minimizes the risk of hypoglycemia [6-8]. Vildagliptin is often used in combination with other antidiabetic drugs to enhance glycemic control and has been found to be effective in both monotherapy and combination therapy, particularly with metformin [9, 10]. Dapagliflozin is chemically written as (2S,3R,4R,5S,6R)-2-{4-chloro-3-[{(4-ethoxyphenyl)methyl]phenyl}-6-(hydroxymethyl)oxane-3,4,5-triol[11] Vildagliptin written as (2S)-1-{2-[(3-hydroxyadamantan-1-yl)amino]acetyl}pyrrolidine-2-carbonitrile [12].

Address for Correspondence: Patel Sanjeetha Reddy, M. Pharmacy, Department of Pharmaceutical Analysis, Malla Reddy College of Pharmacy, Maisammaguda, Secunderabad, Hyderabad, 500100, Medchal District, Telangana, 502313.; **E-Mail:** patelsanjeethareddy@gmail.com**How to Cite this Article:** Patel Sanjeetha Reddy, Analytical Method Development and Validation of Dapagliflozin and Vildagliptin using High Performance Liquid Chromatography. World J Pharm Sci 2026; 13(04): 284-295; <https://doi.org/10.54037/WJPS.2022.100905>**Copyright:** 2022@ The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA), which allows re-users to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

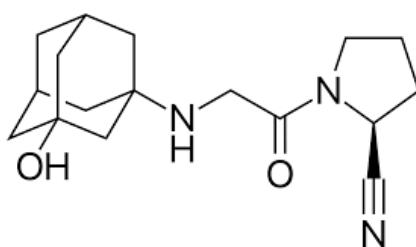


Figure 1: structure of Vildagliptin

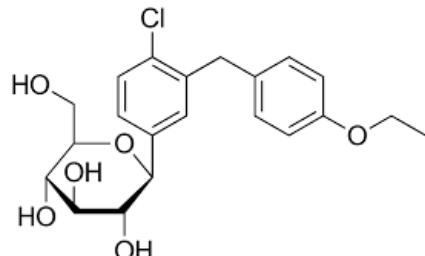


Figure 2: Structure of Dapagliflozin

Extensive literature research has unearthed a multitude of recorded analytical procedures, including the discovery of more economically efficient ways. Nevertheless, there is currently few documented approach for calculating stability studies. Hence, a reliable and cost-effective approach is suggested for assessing the stability of Vildagliptin, Dapagliflozin, and their medicinal dose form using RP-HPLC ^{13 - 17} must be validated and developed as per ICH guidelines

Materials and Methods: Spectrum pharma Research Solution provided with Vildagliptin and Dapagliflozin pure drugs (API) gift samples and Combination Vildagliptin and Dapagliflozin tablets (**Vildaily - DZ**). The chemicals and buffers utilized in this estimation were obtained from Rankem, an Indian supplier.

Instrumentation: The development and method validation were conducted using a WATERS HPLC, specifically the model 2695 SYSTEM, equipped with a Photo diode array detector. The system also included an automated sample injector and the Empower 2 software.

Objective: In order to fulfill ICH standards, we need to design and test an HPLC technique that can detect Dapagliflozin and Vildagliptin in pharmaceutical formulations at the same time.

Table 1: Chromatographic Conditions

Mobile phase	Acetonitrile and 0.1% OPA (55:45 v/v)
Flow rate	1 ml/min
Column	Agilent C18 (4.6 x 250mm, 5 μ m)
Detector wave length	260 nm
Column temperature	30°C
Injection volume	10 mL
Run time	4.0 min
Buffer	Ortho Phosphoric Acid

Buffer Preparation: 0.1%OPA Buffer: 1ml of ortho phosphoric acid was diluted to 1000ml with HPLC grade water.

API Preparation:

Preparation of Standard stock solutions: Accurately weighed 2.5mg of Dapagliflozin, 25mg of Vildagliptin and transferred to 50ml and 50ml individual volumetric flasks and 3/4 th of diluents was added to these flasks and sonicated for 10 minutes. Flask were made up with diluents and labeled as Standard stock solution. (50 μ g/ml of Dapagliflozin and 500 μ g/ml Vildagliptin). 1ml from each stock solution was pipetted out and taken into a 10ml volumetric flask and made up with diluent. (50 μ g/ml Vildagliptin of and 5 μ g/ml of Dapagliflozin)

Formulation Preparation:

Preparation of Sample stock solutions: 10 tablets were taken each tablet weigh and calculate the mean of total 10 minutes then equivalent to average weight of 1 tablet (10mg and 100mg) of dosage form was transferred into a 100 ml volumetric flask, 50ml of diluents was added and sonicated for r the volume was made up with diluent

and filtered by HPLC filters (100 μ g/ml of Dapagliflozin and 1000 μ g/ml Vildagliptin): 0.5 ml of filtered sample stock solution was transferred to 10ml volumetric flask and made up with diluent. (5 μ g/ml of Dapagliflozin and 50 μ g/ml Vildagliptin)

System suitability parameters: Vildagliptin (100 ppm) and Dapagliflozin (10 ppm) standard solutions were prepared, injected six times, and metrics such as peak tailing, resolution, and USP plate count were measured in order to evaluate the system suitability parameters. The region of six standard injection results should have an RSD of no more than 2%.

Specificity: Checking of the interference in the optimized method. We should not find interfering peaks in blank and placebo at retention times of these drugs in this method. Therefore, this method was said to be specific.

Linearity: To test the drug's linearity, serial dilutions from 25% to 150% were prepared. A graph was used to demonstrate the link between peak area response and medication concentration. It was found to be linear at the indicated drug concentration. Dilution were as follows.

1. 25 μ g/mL: Take 0.25 mL of stock solution and dilute to 10 mL
2. 50 μ g/mL: Take 0.5 mL of stock solution and dilute to 10 mL
3. 75 μ g/mL: Take 0.75 mL of stock solution and dilute to 10 mL
4. 100 μ g/mL: Take 1.0 mL of stock solution and dilute to 10 mL
5. 125 μ g/mL: Take 1.25 mL of stock solution and dilute to 10 mL
6. 150 μ g/mL: Take 1.5 mL of stock solution and dilute to 10 mL

Accuracy: Accuracy was performed in triplicate for various concentrations equivalent to 50%, 100% and 150% of the standard amount were injected into the HPLC system per the test procedure. Dilution were as follows.

1. 50 μ g/mL: Take 0.1 mL of stock solution and dilute to 10 mL
2. 100 μ g/mL: Take 0.2 mL of stock solution and dilute to 10 mL
3. 150 μ g/mL: Take 0.3 mL of stock solution and dilute to 10 mL

Sensitivity

Limit of detection and Limit of Quantification

LOD and LOQ were calculated from the average slope and standard deviation from the calibration curve as per ICH guidelines. Based on the response's standard deviation and calibration curve's slope, the LOD and LOQ can be estimated.

Assay

The assay and % purity were calculated for brand Vildaily - DZ with label claim Dapagliflozin 10g and Vildagliptin 100mg. The observed value was compared with that of standard value without interference from the excipients used in the tablet dosage form.

Degradation studies:

Oxidation: To 1 ml of stock solution of Dapagliflozin and Vildagliptin, 1 ml of 20% hydrogen peroxide (H₂O₂) was added separately. The solutions were kept for 30 min at 60°C. For HPLC study, the resultant solution was diluted to obtain 50 μ g/ml & 5 μ g/ml solution and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of sample.

Acid Degradation Studies: To 1 ml of stock s solution Dapagliflozin and Vildagliptin, 1ml of 2N Hydrochloric acid was added and refluxed for 30mins at 600c. The resultant solution was diluted to obtain 50 μ g/ml & 5 μ g/ml solution and 10 μ l solutions were injected into the system and the chromatograms were recorded to assess the stability of sample.

Alkali Degradation Studies: To 1 ml of stock solution Dapagliflozin and Vildagliptin, 1 ml of 2N sodium hydroxide was added and refluxed for 30mins at 600c. The resultant solution was diluted to obtain 50 μ g/ml & 5 μ g/ml solution and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of sample.

Dry Heat Degradation Studies: The standard drug solution was placed in oven at 105°C for 1 h to study dry heat degradation. For HPLC study, the resultant solution was diluted to 50 μ g/ml & 5 μ g/ml solution and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of the sample.

Photo Stability studies: The photochemical stability of the drug was also studied by exposing the 100 μ g/ml Dapagliflozin & 1000 μ g/ml Vildagliptin solution to UV Light by keeping the beaker in UV Chamber for 1days or 200 Watt hours/m² in photo stability chamber. For HPLC study, the resultant solution was diluted to obtain 50 μ g/ml & 5 μ g/ml solutions and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of sample.

Neutral Degradation Studies: Stress testing under neutral conditions was studied by refluxing the drug in water for 1hrs at a temperature of 60°C. For HPLC study, the resultant solution was diluted to 50 μ g/ml & 5 μ g/ml solution and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of the sample.

Table 2: System suitability results

S.no	Vildagliptin			Dapagliflozin				
	Inj	RT (min)	USP Plate Count	Tailing	RT (min)	USP Plate Count	Tailing	Resolution
1		2.286	3441	1.42	2.890	4970	1.32	3.6
2		2.291	3502	1.42	2.900	5152	1.32	3.6
3		2.299	3496	1.41	2.908	4328	1.33	3.7
4		2.306	3480	1.42	2.910	4698	1.32	3.7
5		2.307	3549	1.43	2.916	5203	1.33	3.7
6		2.310	3576	1.42	2.917	5630	1.33	3.7

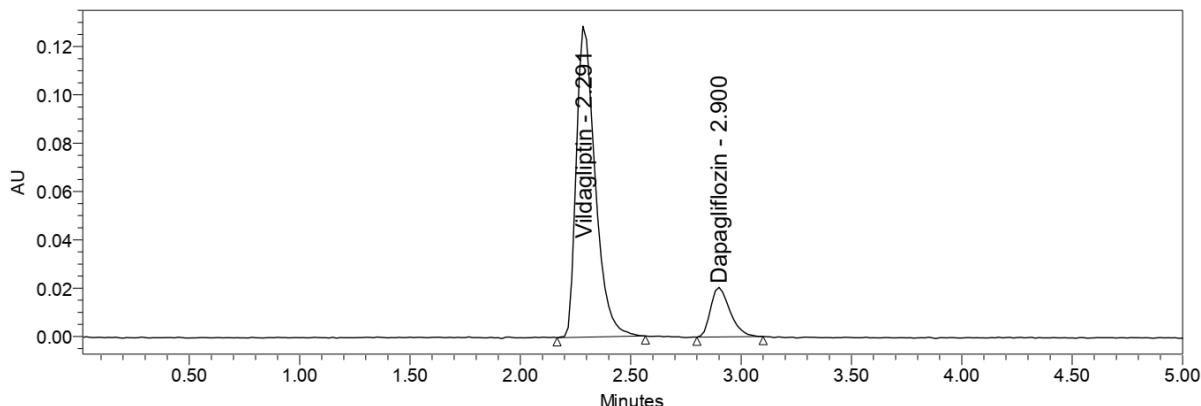
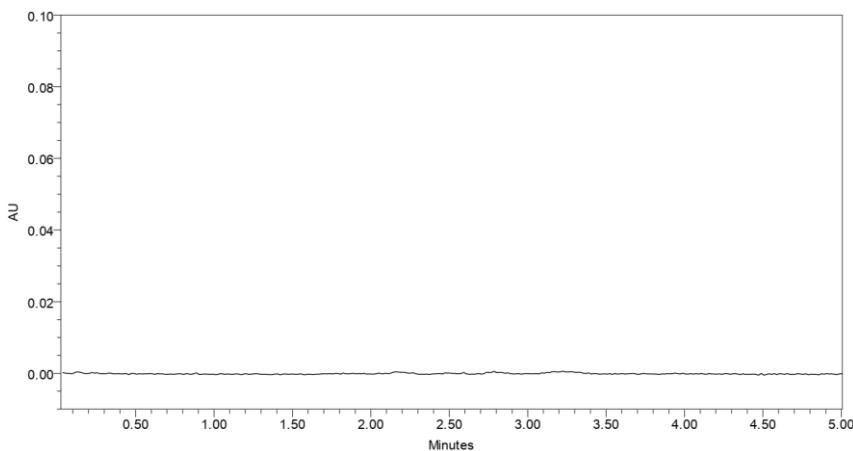



Figure 3: system suitability Chromatogram

Table 3: Specificity data

Sample name	Retention time	Area	Plate count	Tailing	Resolution
Vildagliptin	2.290	770368	3470.3	1.4	
Dapagliflozin	2.896	131114	4694.	1.4	3.7

Figure 4 Specificity of Vildagliptin and Dapagliflozin**Linearity:**

Calibration data is given in table 4 and regression data in table 5 and calibration curve in figure 5, 6

Table 4: Calibration data of Vildagliptin and Dapagliflozin

Vildagliptin		Dapagliflozin	
Conc (μg/mL)	Peak area	Conc(μg/mL)	Peak area
0	0	0	0
12.5	353719	1.25	40981
25	711545	2.5	82353
37.5	1067707	3.75	123832
50	1412802	5	161782
62.5	1774985	6.25	204378
75	2094294	7.5	242408

Figure 5 Calibration curve of Vildagliptin

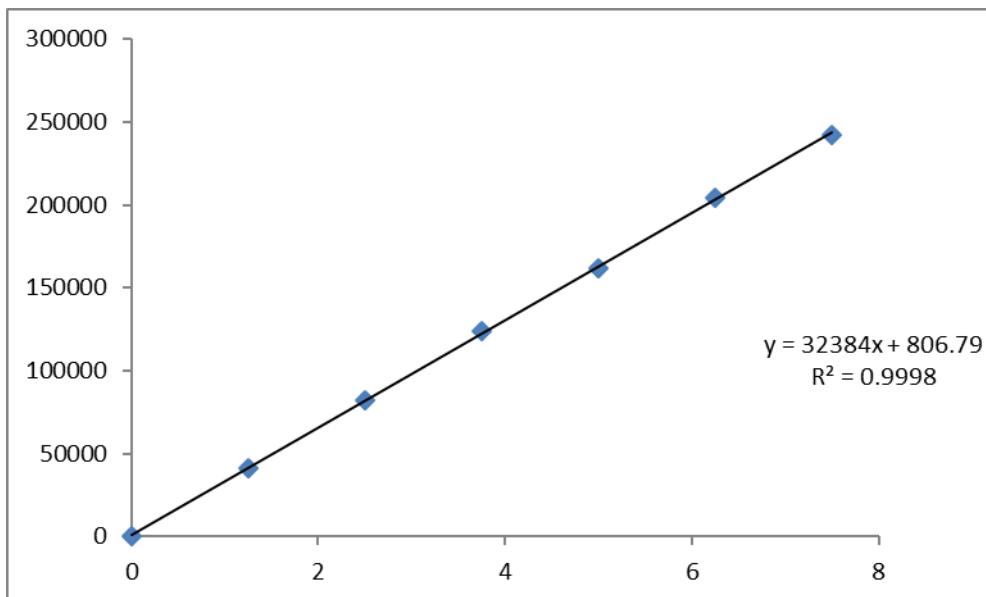


Table 5: regression data

Parameter	Vildagliptin	Dapagliflozin
Conc range (µg/mL)	12.5 – 75 µg/ml	1.25 – 7.5 µg/ml
Regression Equation	$y = 28076x + 6435.3$	$y = 32384x + 806.79$
Co-relation	0.999	0.999

Accuracy:**Recovery data shown in table 6**

Table 6: recovery data of Vildagliptin and Dapagliflozin

% Level	Vildagliptin			Dapagliflozin		
	Amount Spiked (µg/mL)	Amount recovered (µg/mL)	% Recovery	Amount Spiked (µg/mL)	Amount recovered (µg/mL)	% Recovery
50%	25	24.939	99.75	2.5	2.490	99.61
		24.921	99.68		2.481	99.22
		24.913	99.65		2.477	99.07
100%	50	49.706	99.41	5.0	4.976	99.52
		49.745	99.49		4.971	99.41
		49.852	99.70		4.952	99.04
150%	75	74.620	99.49	7.5	7.484	99.78
		74.677	99.57		7.491	99.88
		74.636	99.52		7.485	99.80
% recovery	99.59			99.48		

System precision was performed and the data was shown in table 7

Table 7: System precision of Vildagliptin and Dapagliflozin

S. No	Area of Vildagliptin	Area of Dapagliflozin
1.	1427311	163171
2.	1436362	164577
3.	1439396	164533
4.	1420529	165018
5.	1423834	164401
6.	1429765	164876
Mean	1429533	164429
S.D	7245.1	657.7
%RSD	0.5	0.4

The % RSD for the peak areas of Vildagliptin and Dapagliflozin obtained from six replicate injections of standard solution was within the limit.

Method Precision: The precision of the method was determined by analyzing a sample of Vildagliptin and Dapagliflozin and shown in table 8.

Table 8: method Precision

S. No	Area of Vildagliptin	Area of Dapagliflozin
1.	1424756	162340
2.	1419658	163244
3.	1421313	163214
4.	1425629	162926
5.	1422935	164523
6.	1418175	162963
Mean	1422078	163202
S.D	2904.8	724.3
%RSD	0.2	0.4

From the above results, the % RSD of method precision study was within the limit for Vildagliptin and Dapagliflozin.

Robustness: Robustness conditions like Flow minus (0.9ml/min), Flow plus (1.0ml/min), mobile phase minus (50A:50B), mobile phase plus (60A:40B), temperature minus (27°C) and temperature plus(33°C) was maintained and samples were injected in duplicate manner. System suitability parameters were not much affected and all the parameters were passed. %RSD was within the limit.

Table 9: Robustness data for Vildagliptin and Dapagliflozin.

Condition	%RSD of Vildagliptin	%RSD of Dapagliflozin
Flow rate (-) 0.9ml/min	0.3	0.3
Flow rate (+) 1.1ml/min	0.4	0.5
Mobile phase (-) 50A:50B	0.4	0.9
Mobile phase (+) 60A:40B	0.3	0.9
Temperature (-) 27°C	0.6	0.9
Temperature (+) 33°C	0.3	0.5

Sensitivity:**Table 10: sensitivity of Vildagliptin and Dapagliflozin**

Molecule	LOD	LOQ
Vildagliptin	0.33 μ g/ml	1.00 μ g/ml
Dapagliflozin	0.01 μ g/ml	0.3 μ g/ml

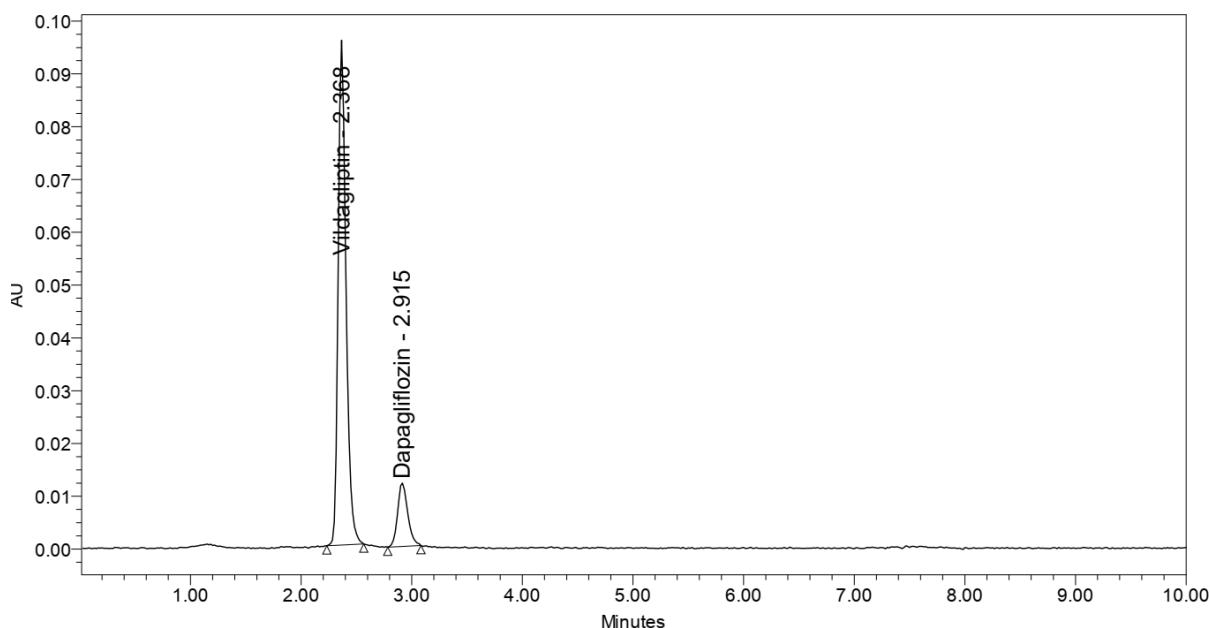

Force Degradation Studies: table 11 shows degradation conditions and table 10 shows the obtained degraded data and purity plot chromatogram in figure 8, 9.

Table 11: degradation conditions

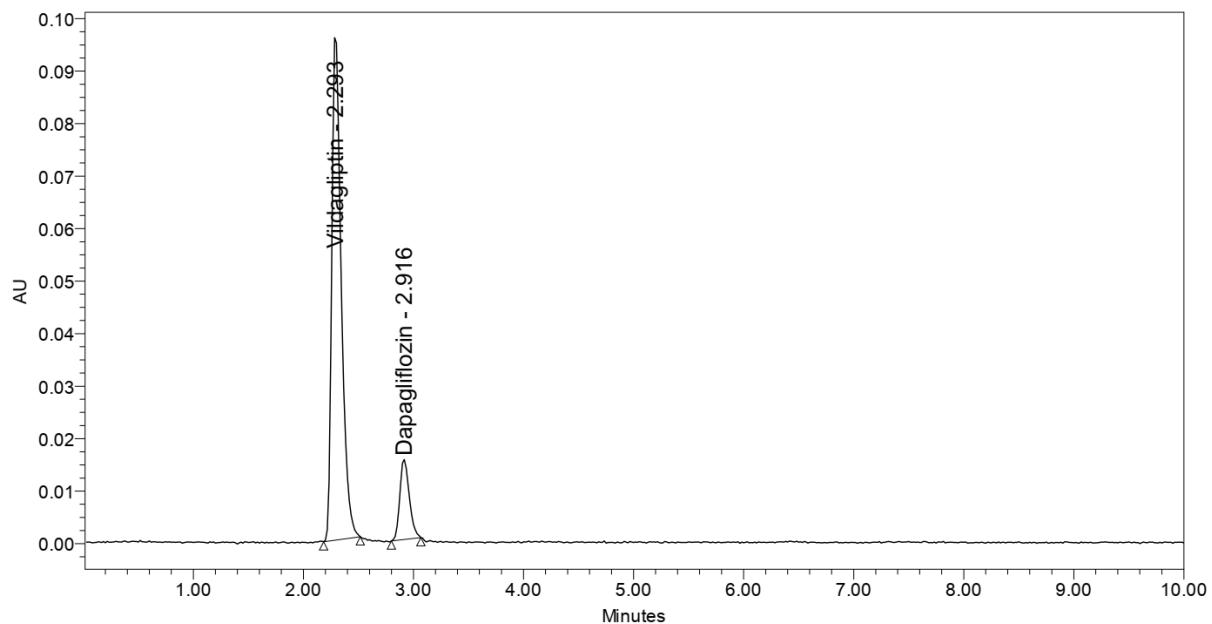
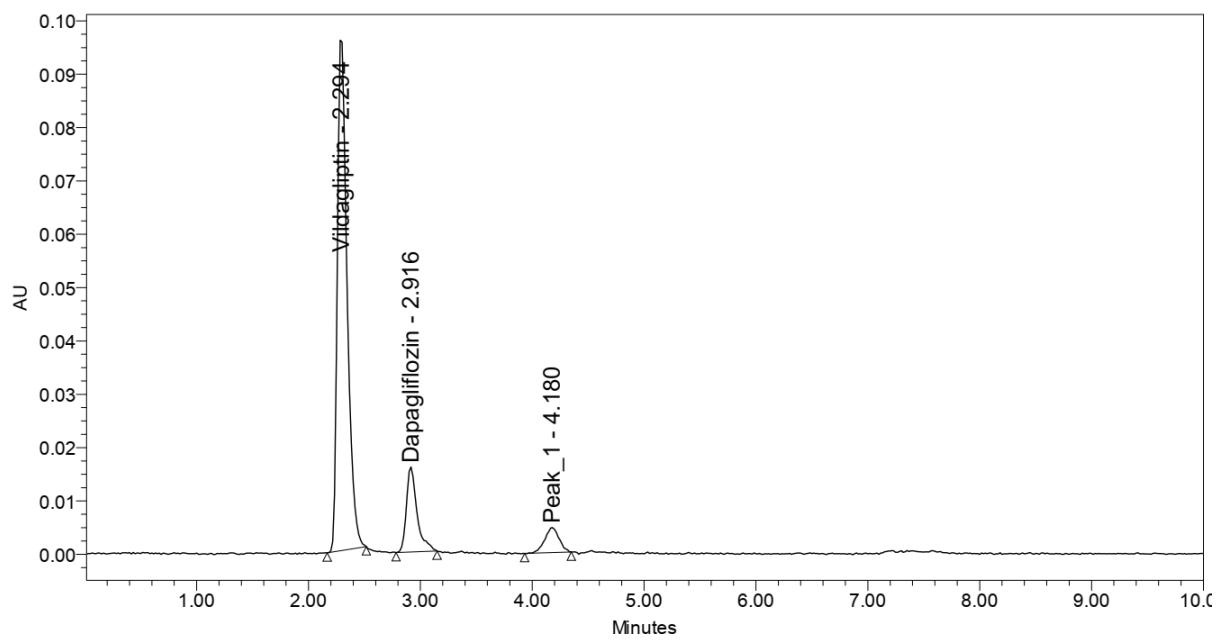
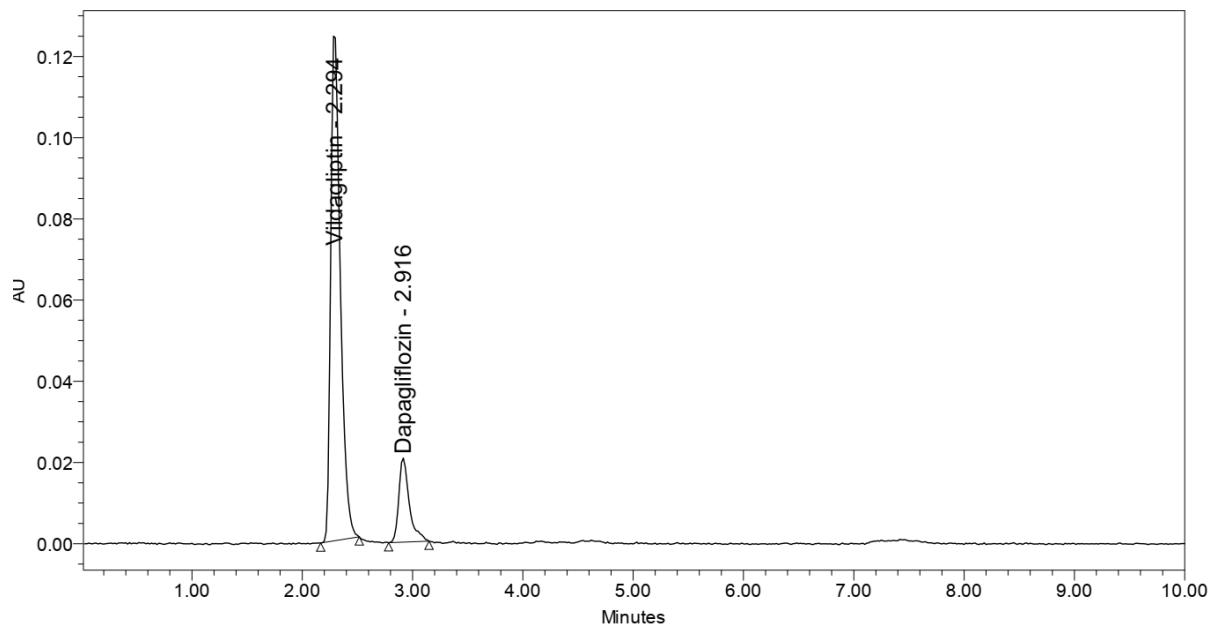

Stress condition	Solvent	Temp(0 C)	Exposed time
Acid	2N HCL	60 0 C	60 mins
Base	2N NAOH	60 0 C	60 mins
Oxidation	20% H ₂ O ₂	60 0 C	60 mins
Thermal	Diluent	105 0 C	6 hours
Photolytic	Diluent	-	-
Hydrolytic	Water	60 0 C	60 mins

Table 12: degradation data

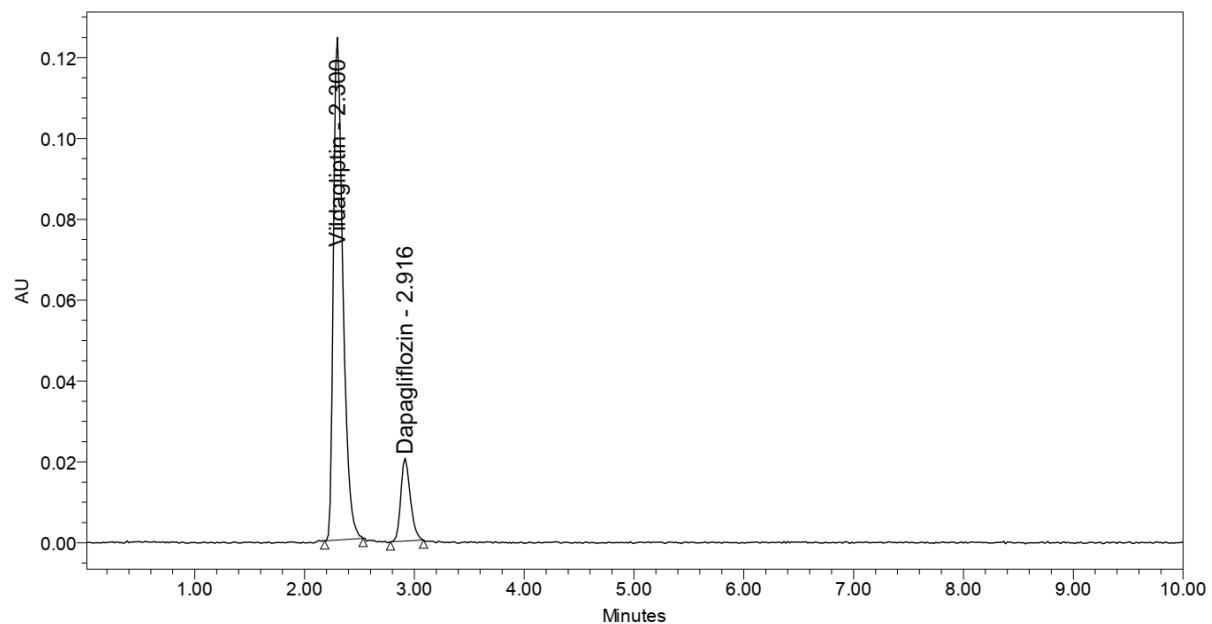
Type of degradation	Vildagliptin			Dapagliflozin		
	area	%recovered	% degraded	area	%recovered	% degraded
Acid	1382586	96.52	3.48	160896	97.66	2.34
Base	1381245	96.43	3.57	160553	97.45	2.55
Peroxide	1390653	97.09	2.91	158832	96.40	3.60
Thermal	1398756	97.65	2.35	162368	98.55	1.45
UV	1420254	99.15	0.85	163378	99.16	0.84
Water	1421657	99.25	0.75	163893	99.47	0.53


Acid degradation chromatogram**Fig 7 acid**

Base degradation chromatogram


Fig 8 base

Peroxide degradation chromatogram


Fig 9 peroxide

Thermal degradation chromatogram

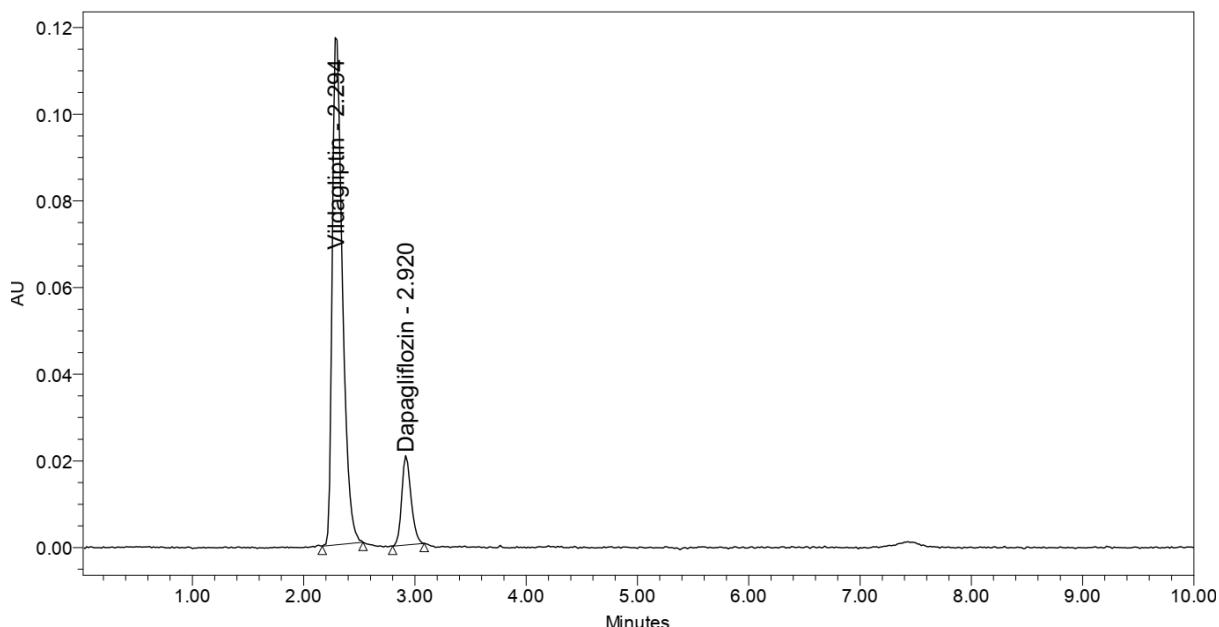


Fig 10 thermal

UV degradation chromatogram

Fig 11 UV

Water degradation chromatogram**Fig 12 water**

Assay: Vildaily - DZ, bearing the label claim Vildagliptin 100mg, Dapagliflozin 10mg. Assay was performed with the above formulation. Average % Assay for Vildagliptin and Dapagliflozin obtained was 99.97% and 100.15% respectively.

Table 13: assay data

Formulation	Label claim(mg)	% Assay*
Vildaily - DZ	Dapagliflozin 10mg.	99.05% w/w
	Vildagliptin 100mg	99.28% w/w

Conclusion:

The simultaneous analysis of Dapagliflozin and Vildagliptin in pharmaceutical formulations. The optimized conditions produced clear, well-separated peaks with good symmetry and a short analysis time. The method showed good linearity over the selected concentration ranges with acceptable correlation values. Precision and accuracy results were within limits, and recovery studies confirmed the accuracy of the method. Small changes in chromatographic conditions did not significantly affect the results, proving the method to be robust. Hence, this HPLC method is suitable for routine quality control and stability analysis of Dapagliflozin and Vildagliptin in combined dosage forms.

ACKNOWLEDGEMENT:

The authors are thankful to, Department of Pharmaceutical Analysis, Malla reddy college of Pharmacy, Affiliated to Osmania University, India and Spectrum Pharma Research Solutions, Hyderabad, Telangana, India.

REFERENCES:

1. Heerspink HJL, et al. Dapagliflozin in patients with chronic kidney disease: A systematic review and meta-analysis. *Lancet Diabetes Endocrinol* . 2020;8(6):410-423. doi:10.1016/S2213-8587(20)30139-X.

2. Zinman B, et al. *Canagliflozin and cardiovascular and renal events in type 2 diabetes*. *N Engl J Med* . 2015;373(22):2117-2128. doi:10.1056/NEJMoa1510937.
3. Fioretto P, et al. *Dapagliflozin in patients with type 2 diabetes and heart failure: A systematic review*. *JAMA* . 2019;322(11):1043-1052. doi:10.1001/jama.2019.12178.
4. Cherney DZ, et al. *Effects of SGLT2 inhibitors on renal outcomes in patients with type 2 diabetes and chronic kidney disease: A systematic review and meta-analysis*. *Diabetes Care* . 2020;43(3):666-674. doi:10.2337/dc19-2560.
5. Wanner C, et al. *Empagliflozin and nephropathy in type 2 diabetes*. *N Engl J Med* . 2016;375(4):323-334. doi:10.1056/NEJMoa1515920.
6. Bosi E, et al. *Vildagliptin, a DPP-4 inhibitor, in combination with metformin in patients with type 2 diabetes*. *Diabetes Care* . 2009;32(12):2324-2329. doi:10.2337/dc09-1073.
7. Del Prato S, et al. *Efficacy and safety of vildagliptin in type 2 diabetes mellitus: A systematic review*. *Diabetes Metab Res Rev* . 2009;25(3):250-261. doi:10.1002/dmrr.992.
8. Rosenstock J, et al. *Efficacy and safety of vildagliptin and metformin as initial combination therapy in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial*. *Lancet Diabetes Endocrinol* . 2014;2(5):377-385. doi:10.1016/S2213-8587(14)70041-9.
9. DeFronzo RA, et al. *Combination therapy with vildagliptin and metformin in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial*. *Diabetes Care* . 2007;30(4):955-961. doi:10.2337/dc06-2643.
10. Svensson AM, et al. *Long-term efficacy and safety of vildagliptin in patients with type 2 diabetes: A systematic review*. *Diabetes Obes Metab* . 2016;18(8):785-795. doi:10.1111/dom.12683.
11. <https://go.drugbank.com/drugs/DB06292>
12. <https://go.drugbank.com/drugs/DB04876>
13. Bhavesh H. Patel, Nishit H. Teraiya, *Simultaneous Estimation and Stability Indicating Method of Vildagliptin And Dapagliflozin by RP-HPLC in Pharmaceutical Dosage Form*. *Int Internal Med J*, 2(4), 01-06.
14. P Priya, P Janki, P Bhumi, P Ankita, T Urvi, *Stability Indicating Rp-Hplc Method Development and Validation For Simulaneous Estimation Of Dapagliflozin Propanediol Monohydrate And Vildagliptin In Tablet Dosage Form*, (2023) IJCRT, Volume 11, Issue 3 March 2023, ISSN: 2320-2882
15. Galande, V. V., Kolhe, M. H., Khatal, A. R., Bhor, R. J., Gawali, P. S., Bhalerao, P. S., & Mhaske, M. P. (2024). *Stability Indicating Method Development and Validation of Vildagliptin and Dapagliflozin in Bulk and in Marketed Formulation by UHPLC Method*. *International Journal of Pharmaceutical Investigation*, 14(3), 959–965. DoI: <https://doi.org/10.5530/ijpi.14.3.105>
16. Deshmukh S B , Wagh P A , Yadav S S, Mane M B, *Stability-Indicating HPLC Method development for Vildagliptin and Dapagliflozin*, IJDDT, Volume 14 Issue 3, July - September 2024.
17. Pratik Biswas, P.D. Chaithanya Sudha, M.K. Ranganath, H.B.Varun, P.R. Eresh Kumaran and Kavitha, *A novel stability indicating RP-HPLC method for the simultaneous determination of dapagliflozin and vildagliptin in tablet dosage forms*, *Annals of Phytomedicine: An International Journal*, 12(2): 874-881, 2023.